Lecture: 5-5 The Substitution Rule (Part 1)
Example 1: How would we factor $x^{4}-5 x^{2}+6$ and how might it relate to finding $\int 2 x \sqrt{1+x^{2}} d x$?

$$
\begin{aligned}
u=x^{2} \text { so } & x^{4}-5 x^{2}+6 \\
& =u^{2}-5 u+6 \\
& =(u-2)(u-3) \\
& =\left(x^{2}-2\right)\left(x^{2}-3\right)
\end{aligned}\left\{\begin{aligned}
& u=1+x^{2} \\
& \frac{d u}{d x}=2 x \\
& d u=2 x d x=\int u^{1 / 2} d u \\
&=\frac{2}{3} u^{3 / 2}+C \\
&=\frac{2}{3}\left(1+x^{2}\right)^{3 / 2}+C
\end{aligned}\right.
$$

The Substitution Rule If $u=g(x)$ is a differentiable function whose range is an interval I and f is continuous on I then

$$
\int f(g(x)) g^{\prime}(x) d x=\int f(u) d u
$$

Note, the substitution rule is basically undoing the chain rule.

$$
\begin{aligned}
& \int f(g(x)) g^{\prime}(x) d x=\int f(u) d u \\
& \begin{array}{l}
u=g(x) \\
\frac{d u}{d x}=g^{\prime}(x) \Rightarrow d u=g^{\prime}(x) d x
\end{array} \sim g(x) \text { is your "inside" function. }
\end{aligned}
$$

Example 2: Evaluate $\int x^{3} \cos \left(x^{4}+2\right) d x$ two different ways:
(a) solve for $d x$.

$$
\left.\begin{array}{rl}
u=x^{4}+2 \\
d u=4 x^{3} d x \\
\frac{d u}{4 x^{3}}=d x
\end{array}\right]=\int x^{3} \cos (u) \cdot \frac{d u}{4 x^{3}}=\frac{1}{4} \int \cos u d u \quad \begin{aligned}
& \\
& \\
& =\frac{1}{4} \sin (u)+c \\
&
\end{aligned}
$$

The trickiest thing about substitution is deciding what to substitute. As substiution is (usually) undoing the chain rule you chould let your u be the inside function. Choose u to be the stuff inside of a power, root sign, denominator, or trigonometric function. When you are choosing your u the derivative of u should appear elsewhere in the integrand up to a constant multiple. The only way to get better is a lot of practice!
Once you make your subsitution the integral usually simplifies considerably. If your original variable does not completely disappear when making the substitution you either (a) chose a subsitution that doesn't work or (b) made a mistake. At this stage you can try something different, or start your original substitution again.
Example 3: Evaluate the following indefinite integrals.

$$
\begin{aligned}
& \text { (a) } \int \sqrt{3 x+2} d x=\frac{1}{3} \int u^{1 / 2} d u \\
& \text { (b) } \int \cos ^{4} x \sin x d x=\int(\cos x)^{4} \sin x d x \\
& \left.\begin{array}{l}
u=3 x+2 \\
d u=3 d x \\
\frac{1}{3} d u=d x
\end{array}\right]=\frac{1}{3} \frac{2}{3} u^{3 / 2}+c \quad=\frac{2}{9}(3 x+2)^{3 / 2}+c \quad \$ \\
& \begin{aligned}
& u=\cos x \\
& d u=-\sin x d x \\
&-d u=-\int \sin ^{x} x d x
\end{aligned}=-\frac{1}{5} u^{4} d u \quad+c \\
& =-\frac{1}{5} \cos ^{5} x+C
\end{aligned}
$$

Example 4: Evaluate the following indefinite integrals.

Example 5: Evaluate the following indefinite integrals.

(b) $\int \frac{\arctan x}{x^{2}+1} d x=\int u d u$

